Skip to main content

Astrocytoma clinical trials at UC Cancer

28 research studies open to eligible people

Showing trials for
  • 18F-FDG PET and Osimertinib in Evaluating Glucose Utilization in Patients With EGFR Activated Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    This phase II trial studies how well fludeoxyglucose F-18 (18F-FDG) positron emission tomography (PET) and osimertinib works in evaluating glucose utilization in patients with EGFR activated glioblastoma. Osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. 18F-FDG PET imaging may help to detect changes in tumor glucose utilization, which may allow investigators to obtain an early read out on the impact of osimertinib on recurrent glioblastoma patients whose tumors have EGFR activation.

    at UCLA

  • 3D Prediction of Patient-Specific Response

    open to eligible people ages 18 years and up

    This is a prospective, non-randomized, observational registry study evaluating a patient-specific ex vivo 3D (EV3D) assay for drug response using a patient's own biopsy or resected tumor tissue for assessing tissue response to therapy in patients with advanced cancers, including ovarian cancer, high-grade gliomas, and high-grade rare tumors.

    at UCSF

  • 9-ING-41 in Patients With Advanced Cancers

    open to eligible people ages 18 years and up

    GSK-3β is a potentially important therapeutic target in human malignancies. The Actuate 1801 Phase 1/2 study is designed to evaluate the safety and efficacy of 9-ING-41, a potent GSK-3β inhibitor, as a single agent and in combination with cytotoxic agents, in patients with refractory cancers.

    at UCSF

  • A Study of Abemaciclib in Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    This research study is studying a targeted therapy as a possible treatment for recurrent glioblastoma (GBM). The following intervention will be used in this study: -Abemaciclib

    at UCLA UCSF

  • A Study of the Experimental Medicine Olaparib For Advanced Glioma, Cholangiocarcinoma, or Solid Tumors With IDH1 or IDH2 Mutations

    open to eligible people ages 18 years and up

    This phase II trial studies how well olaparib works in treating patients with glioma, cholangiocarcinoma, or solid tumors with IDH1 or IDH2 mutations that have spread to other places in the body (metastatic) and usually cannot be cured or controlled with treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UC Davis

  • A Study of Varlilumab and IMA950 Vaccine Plus Poly-ICLC in Patients With WHO Grade II Low-Grade Glioma (LGG)

    open to eligible people ages 18 years and up

    This is a pilot, randomized, two arm neoadjuvant vaccine study in human leukocyte antigen-A2 positive (HLA-A2+) adults with World Health Organization (WHO) grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety of the novel combination of subcutaneously administered IMA950 peptides and poly-ICLC (Hiltonol) and i.v. administered CDX-1127 (Varlilumab) in the neoadjuvant approach; and 2) whether addition of i.v. CDX-1127 (Varlilumab) increases the response rate and magnitude of CD4+ and CD8+ T-cell responses against the IMA950 peptides in post-vaccine peripheral blood mononuclear cell (PBMC) samples obtained from participating patients.

    at UCSF

  • APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors

    open to eligible people ages 18 years and up

    The primary Phase 1 purpose of this study is to assess overall safety and tolerability and recommended Phase 2 dose (RP2D) of APL-101. The Phase 2 portion will assess efficacy of the dose determined in Phase 1 in individuals with Non-Small Cell Lung Cancer with c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors

    at UCSF

  • BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas

    open to eligible people ages 13-25

    This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma that is newly diagnosed or has come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma.

    at UCSF

  • CB-839 With Radiation Therapy and Temozolomide in Treating Participants With IDH-Mutated Diffuse Astrocytoma or Anaplastic Astrocytoma

    open to eligible people ages 16 years and up

    This phase 1b trial studies the side effects and best dose of glutaminase inhibitor CB-839 hydrochloride (CB-839) in combination with radiation therapy and temozolomide in treating participants with IDH-mutated diffuse or anaplastic astrocytoma. CB-839 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or stopping them from spreading. Giving CB-839 with radiation therapy and temozolomide may work better in treating participants with IDH-mutated diffuse astrocytoma or anaplastic astrocytoma.

    at UCSD

  • Clinical Benefit of Using Molecular Profiling to Determine an Individualized Treatment Plan for Patients With High Grade Glioma

    open to eligible people ages up to 21 years

    This is a 2 strata pilot trial within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). The study will use a new treatment approach based on each patient's tumor gene expression, whole-exome sequencing (WES), targeted panel profile (UCSF 500 gene panel), and RNA-Seq. The current study will test the efficacy of such an approach in children with High-grade gliomas HGG.

    at UCSD UCSF

  • DSC-MRI in Measuring Relative Cerebral Blood Volume for Early Response to Bevacizumab in Patients With Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    This phase II trial studies how well dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) works in measuring relative cerebral blood volume (rCBV) for early response to bevacizumab in patients with glioblastoma that has come back. DSC-MRI may help evaluate changes in the blood vessels within the cancer to determine a patient?s response to treatment.

    at UC Irvine

  • ERC1671/GM-CSF/Cyclophosphamide for the Treatment of Glioblastoma Multiforme

    open to eligible people ages 18 years and up

    This phase II clinical trial studies how well ERC1671 plus Granulocyte-macrophage colony-stimulating factor (GM-CSF) plus Cyclophosphamide with Bevacizumab works compared to Placebo Injection plus Placebo Pill with Bevacizumab in treating patients with recurrent/progressive, bevacizumab naïve glioblastoma multiforme and gliosarcoma (World Health Organization (WHO) grade IV malignant gliomas, GBM).

    at UC Irvine

  • Experimental Combination of Dabrafenib and Trametinib After Radiation For High-Grade Glioma (brain/nervous system cancer)

    open to eligible people ages 3-25

    This phase II trial studies how well the combination of dabrafenib and trametinib works after radiation therapy in children and young adults with high grade glioma who have a genetic change called BRAF V600 mutation. Radiation therapy uses high energy rays to kill tumor cells and reduce the size of tumors. Dabrafenib and trametinib may stop the growth of tumor cells by blocking BRAF and MEK, respectively, which are enzymes that tumor cells need for their growth. Giving dabrafenib with trametinib after radiation therapy may work better than treatments used in the past in patients with newly-diagnosed BRAF V600-mutant high-grade glioma.

    at UC Davis UCLA UCSF

  • FDG PET/CT in Monitoring Very Early Therapy Response in Patients With Glioblastoma

    open to eligible people ages 18-99

    This pilot clinical trial studies fluordeoxyglucose (fludeoxyglucose) F-18 (FDG) positron emission tomography (PET)/computed tomography (CT) in monitoring very early therapy response in patients with glioblastoma. Diagnostic procedures, such as FDG PET/CT, may help measure a patient's response to earlier treatment. Chemotherapy can induce very rapid changes to the tumor's glucose consumption which can be measured with imaging. FDG PET/CT shortly after the start of therapy may help identify very early therapy response in patients with glioblastoma.

    at UCLA

  • Fimepinostat in Treating Brain Tumors in Children and Young Adults

    open to eligible people ages 3-39

    This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Fluoroethyltyrosine in Detecting Tumors in Participants With Recurrent Intracranial Tumors

    open to eligible people ages 3 years and up

    This phase II trial studies how well F-18 fluoroethyltyrosine (fluoroethyltyrosine) works in detecting tumors in participants with intracranial tumors that have come back. Imaging agents, such as fluoroethyltyrosine, may help doctors see the tumor better during a positron emission tomography (PET) scan.

    at UCSF

  • Hyperpolarized Carbon-13 (13C) Pyruvate Imaging in Patients With Glioblastoma

    open to eligible people ages 18 years and up

    The purpose of this study is to evaluate whether new metabolic imaging will be useful to physicians and patients with glioblastoma for making treatment decisions and seeing how well various types of treatment work. The goal is to improve the way patient care is managed in the future. If you chose to be in this study, you will be receiving novel magnetic resonance (MR) metabolic imaging with standard MR imaging. The research component includes an injection of an investigational agent, called hyperpolarized 13C pyruvate, to obtain dynamic metabolic imaging.

    at UCSF

  • Neo-adjuvant Evaluation of Glioma Lysate Vaccines in WHO Grade II Glioma

    open to eligible people ages 18 years and up

    This is a pilot neoadjuvant vaccine study in adults with WHO grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety and feasibility of the neoadjuvant approach; and 2) whether the regimen increases the level of type-1 chemokine CXCL10 and vaccine-specific (i.e., reactive to GBM6-AD) CD8+ T-cells in tumor-infiltrating leukocytes (TILs) in the surgically resected glioma.

    at UCSF

  • Oral ONC201 in Recurrent GBM, H3 K27M Glioma, and Midline Glioma

    open to eligible people ages 16 years and up

    ONC201 is a new drug candidate that kills cancer cells but not normal cells in laboratory studies and has been previously evaluated in a phase I clinical trial in advanced cancer patients. This clinical trial will enroll patients with recurrent glioblastoma or recurrent WHO Grade IV gliomas with the H3 K27M mutation.

    at UCLA

  • Pembrolizumab and a Vaccine (ATL-DC) for the Treatment of Surgically Accessible Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    This phase I trial studies the side effects and how well of pembrolizumab and a vaccine therapy (ATL-DC vaccine) work in treating patients with glioblastoma that has come back (recurrent) and can be removed by surgery (surgically accessible). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Vaccines, such as ATL-DC vaccine, may help the body build an effective immune response to kill tumor cells. Giving pembrolizumab and ATL-DC vaccine may work better in treating patients with glioblastoma compared to ATL-DC alone.

    at UCLA

  • Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas

    open to eligible people ages 12 months to 21 years

    This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

    at UCSF

  • Study of Ad-RTS-hIL-12 + Veledimex in Combination With Cemiplimab in Subjects With Recurrent or Progressive Glioblastoma

    open to eligible people ages 18-75

    This research study involves an investigational product: Ad-RTS-hIL-12 given with veledimex for production of human IL-12. IL-12 is a protein that can improve the body's natural response to disease by enhancing the ability of the immune system to kill tumor cells and may interfere with blood flow to the tumor. Cemiplimab-rwlc (Libtayo) is an antibody (a kind of human protein) that is being tested to see if it will allow the body's immune system to work against glioblastoma tumors. Libtayo (cemiplimab-rwlc) is currently FDA approved in the United States for metastatic cutaneous cell carcinoma (CSCC), but is not approved in glioblastoma. Cemiplimab-rwlc may help your immune system detect and attack cancer cells. Ad-RTS-hIL-12 and veledimex will be given in combination with cemiplimab-rwlc to enhance the IL-12 mediated effect observed to date. The main purpose of this study is to evaluate the safety and efficacy of a single tumoral injection of Ad-RTS-hIL-12 given with oral veledimex in combination with cemiplimab-rwlc.

    at UCSF

  • Study of AMG 596 in Patients With EGFRvIII Positive Glioblastoma

    open to eligible people ages 18-100

    This is a Phase 1/1b Study to Evaluate Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of AMG 596 monotherapy or in combination with AMG 404 in Subjects with Glioblastoma or Malignant Glioma Expressing Mutant Epidermal Growth Factor Receptor Variant III (EGFRvIII). This is a first in human (FIH), open-label, sequential-dose-escalation study in subjects with EGFRvIII-positive glioblastoma or malignant glioma. This study will enroll 2 groups of subjects according to disease stage, recurrent disease (Group 1) and maintenance treatment after SoC in newly diagnosed disease (Group 2).

    at UCLA

  • Study to Evaluate Eflornithine + Lomustine vs Lomustine in Recurrent Anaplastic Astrocytoma (AA) Patients

    open to eligible people ages 18 years and up

    The purpose of this study is to compare the efficacy and safety of eflornithine in combination with lomustine, compared to lomustine taken alone, in treating patients whose anaplastic astrocytoma has recurred/progressed after radiation and temozolomide chemotherapy.

    at UC Irvine UCLA UCSD UCSF

  • Study to Evaluate Safety, Tolerability, and Optimal Dose of Candidate GBM Vaccine VBI-1901 in Recurrent GBM Subjects

    open to eligible people ages 18-70

    The purpose of this study is to assess the safety and tolerability of VBI-1901 in subjects with Recurrent GBM.

    at UCLA

  • Testing the Ability of AMG 232 (KRT 232) to Get Into the Tumor in Patients With Brain Cancer

    open to eligible people ages 18 years and up

    This phase I trial studies the side effects and best dose of MDM2 inhibitor KRT-232 in treating patients with glioblastoma (brain cancer) that is newly diagnosed or has come back (recurrent). MDM2 inhibitor KRT-232 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCLA

  • Trial of Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001

    open to eligible people ages 18 years and up

    This is a Phase 2 study of newly diagnosed patients with high grade glioma (HGG) undergoing standard radiation therapy and temozolomide treatment. BMX-001 added to radiation therapy and temozolomide has the potential not only to benefit the survival of high grade glioma patients but also to protect against deterioration of cognition and impairment of quality of life. BMX-001 will be given subcutaneously first with a loading dose zero to four days prior to the start of chemoradiation and followed by twice a week doses at one-half of the loading dose for the duration of radiation therapy plus two weeks. Both safety and efficacy of BMX-001 will be evaluated. Impact on cognition will also be assessed. Eighty patients will be randomized to the treatment arm that will receive BMX-001 while undergoing chemoradiation and 80 patients randomized to receive chemoradiation alone. The sponsor hypothesizes that BMX-001 when added to standard radiation therapy and temozolomide will be safe at pharmacologically relevant doses in patients with newly diagnosed high grade glioma. The sponsor also hypothesizes that the addition of BMX-001 will positively impact the overall survival and improve objective measures of cognition in newly diagnosed high grade glioma patients.

    at UCLA UCSF

  • Veliparib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed Malignant Glioma Without H3 K27M or BRAFV600 Mutations

    open to eligible people ages 3-25

    This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.

    at UCLA UCSF

Last updated: