Skip to main content

Brain Metastases clinical trials at UC Cancer

6 research studies open to eligible people

Showing trials for
  • A Study to Compare the Administration of Encorafenib + Binimetinib + Nivolumab Versus Ipilimumab + Nivolumab in BRAF-V600 Mutant Melanoma With Brain Metastases

    open to eligible people ages 18 years and up

    This phase II trial compares the effect of encorafenib, binimetinib, and nivolumab versus ipilimumab and nivolumab in treating patients with BRAF- V600 mutant melanoma that has spread to the brain (brain metastases). Encorafenib and binimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Ipilimumab and nivolumab are monoclonal antibodies that may interfere with the ability of tumor cells to grow and spread. This trial aims to find out which approach is more effective in shrinking and controlling brain metastases from melanoma.

    at UCLA

  • Genetic Testing in Guiding Treatment for Patients With Brain Metastases

    open to eligible people ages 18 years and up

    This phase II trial studies how well genetic testing works in guiding treatment for patients with solid tumors that have spread to the brain. Several genes have been found to be altered or mutated in brain metastases such as NTRK, ROS1, CDK or PI3K. Medications that target these genes such as abemaciclib, paxalisib, and entrectinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Genetic testing may help doctors tailor treatment for each mutation.

    at UC Irvine UCSD

  • HKI-272 for HER2-Positive Breast Cancer and Brain Metastases

    open to eligible people ages 18 years and up

    The purpose of this research study is to determine how well neratinib works in treating breast cancer that has spread to the brain. Neratinib is a recently discovered oral drug that may stop breast cancer cells from growing abnormally by inhibiting (or blocking) members of a family of proteins that include Human Epidermal Growth Factor Receptor 2 (HER2). In this research study, the investigators are looking to see how well neratinib works to decrease the size of or stabilize breast cancer that has spread to the brain. The investigators are also looking at how previous treatments have affected your thinking (or cognition) and how much neratinib reaches the central nervous system.

    at UCSF

  • Pivotal, Open-label, Randomized Study of Radiosurgery With or Without Tumor Treating Fields (TTFields) for 1-10 Brain Metastases From Non-small Cell Lung Cancer (NSCLC).

    open to eligible people ages 18 years and up

    The study is a prospective, randomized controlled phase III trial, to test the efficacy, safety and neurocognitive outcomes of advanced NSCLC patients, following stereotactic radiosurgery (SRS) for 1-10 brain metastases, treated with NovoTTF-100M compared to supportive treatment alone. The device is an experimental, portable, battery operated device for chronic administration of alternating electric fields (termed TTFields or TTF) to the region of the malignant tumor, by means of surface, insulated electrode arrays.

    at UCSF

  • Substudy 02D: Safety and Efficacy of Pembrolizumab in Combination With Investigational Agents or Pembrolizumab Alone in Participants With Melanoma Brain Metastasis (MK-3475-02D/KEYMAKER-U02)

    open to eligible people ages 18-120

    Substudy 02D is part of a larger research study that is testing experimental treatments for melanoma, a type of skin cancer. The larger study is the umbrella study. The goal of substudy 02D is to evaluate the safety and efficacy of investigational treatment arms in programmed cell-death 1 (PD-1) naïve or PD-1 exposed participants with melanoma brain metastasis (MBM) and to identify the investigational agent(s) that, when used in combination, are superior to the current treatment options/historical control available.

    at UCLA

  • UCSD Image-Guided Cognitive-Sparing Radiosurgery for Brain Metastases

    open to eligible people ages 18 years and up

    In this proposal, the investigators introduce advanced diffusion and volumetric imaging techniques along with innovative, automated image parcellation methods to identify critical brain regions, incorporate into cognitive-sparing SRS, and analyze biomarkers of radiation response. This work will advance the investigators' understanding of neurocognitive changes after brain SRS and help create interventions that preserve cognitive-function in brain metastases patients.

    at UCSD

Last updated: