Skip to main content

Malignant Neoplasm clinical trials at UC Cancer

32 research studies open to eligible people

Showing trials for
  • A FIH Study of PF-07284890 in Participants With BRAF V600 Mutant Solid Tumors With and Without Brain Involvement

    open to eligible people ages 16 years and up

    First-in-human study to assess safety, tolerability, PK, and preliminary activity of PF-07284890 as a single agent and in combination with binimetinib in participants with BRAF V600-mutated advanced solid tumor malignancies with and without brain involvement.

    at UCSF

  • A Study of M3814, Radium-223 Dichloride & Avelumab in Prostate Cancer

    open to eligible males ages 18 years and up

    This phase I/II trial studies the best dose of M3814 when given together with radium-223 dichloride or with radium-223 dichloride and avelumab and to see how well they work in treating patients with castrate-resistant prostate cancer that had spread to other places in the body (metastatic). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radioactive drugs, such as radium-223 dichloride, may carry radiation directly to tumor cells and not harm normal cells. Immunotherapy with monoclonal antibodies, such as avelumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This study is being done to find out the better treatment between radium-223 dichloride alone, radium-223 dichloride in combination with M3814, or radium-223 dichloride in combination with both M3814 and avelumab, to lower the chance of prostate cancer growing or spreading in the bone, and if this approach is better or worse than the usual approach for advanced prostate cancer not responsive to hormonal therapy.

    at UC Davis UC Irvine

  • A Study of Radium-223 Dichloride for Advanced Kidney Cancer Spread to Bones

    open to eligible people ages 18 years and up

    This phase II trial studies whether adding radium-223 dichloride to the usual treatment, cabozantinib, improves outcomes in patients with renal cell cancer that has spread to the bone. Radioactive drugs such as radium-223 dichloride may directly target radiation to cancer cells and minimize harm to normal cells. Cabozantinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving radium-223 dichloride and cabozantinib may help lessen the pain and symptoms from renal cell cancer that has spread to the bone, compared to cabozantinib alone.

    at UC Davis UCSD

  • A Study of XL092 as Single-Agent and Combination Therapy in Subjects With Solid Tumors

    open to eligible people ages 18 years and up

    This is a Phase 1, open-label, dose-escalation and expansion study, evaluating the safety, tolerability, pharmacokinetics (PK), preliminary antitumor activity, and effect on biomarkers of XL092 administered alone, in combination with atezolizumab, and in combination with avelumab to subjects with advanced solid tumors.

    at UCLA UCSF

  • A Study to Compare the Administration of Encorafenib + Binimetinib + Nivolumab Versus Ipilimumab + Nivolumab in BRAF-V600 Mutant Melanoma With Brain Metastases

    open to eligible people ages 18 years and up

    This phase II trial compares the effect of encorafenib, binimetinib, and nivolumab versus ipilimumab and nivolumab in treating patients with BRAF- V600 mutant melanoma that has spread to the brain (brain metastases). Encorafenib and binimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Ipilimumab and nivolumab are monoclonal antibodies that may interfere with the ability of tumor cells to grow and spread. This trial aims to find out which approach is more effective in shrinking and controlling brain metastases from melanoma.

    at UCLA

  • A Study to See if an iPhone Weight Management App Can Help Promote Weight Loss in Adolescents and Young Adults After a Stem Cell Transplant

    open to eligible people ages 13-30

    This early phase I trial studies how well a behavioral weight loss intervention consisting of a smartphone application and coaching works for the promotion of weight loss in adolescents and young adults after a stem cell transplant. This study may help researchers learn more about how adolescents and young adults can lose weight and develop healthy eating habits.

    at UCLA

  • A Trial of AMXI-5001 for Treatment in Patients With Advanced Malignancies (Cancer)

    open to eligible people ages 18 years and up

    ATLAS-101 is a Phase I/II clinical trial of AMXI-5001 in adult participants with advanced malignancies who have previously failed other therapies. The study has two phases. The purpose of Phase I (Dose Escalation) is to confirm the appropriate treatment dose and Phase II (Dose Expansion) is to characterize the safety and efficacy of AMXI-5001.

    at UC Davis UCLA

  • Adding Cabozantinib to Usual Treatment for Advanced Kidney Cancer

    open to eligible people ages 18 years and up

    This phase III trial compares the usual treatment (treatment with ipilimumab and nivolumab followed by nivolumab alone) to treatment with ipilimumab and nivolumab, followed by nivolumab with cabozantinib in patients with untreated renal cell carcinoma that has spread to other parts of the body. The addition of cabozantinib to the usual treatment may make it work better. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known how well the combination of cabozantinib and nivolumab after initial treatment with ipilimumab and nivolumab works in treating patients with renal cell cancer that has spread to other parts of the body.

    at UC Davis UCSD UCSF

  • Adding Radium Therapy to Treatment for Bone Metastatic Breast Cancer

    open to eligible people ages 18 years and up

    This phase II trial studies how well radium-223 dichloride and paclitaxel work in treating patients with advanced breast cancer that has spread to the bones. Radium-223 dichloride is a radioactive drug that behaves in a similar way to calcium and collects in cancer that has spread to the bones (bone metastases). The radioactive particles in radium-223 dichloride act on bone metastases, killing the tumor cells and reducing the pain that they can cause. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving radium-223 dichloride and paclitaxel may work better in treating patients with metastatic breast cancer compared to paclitaxel alone.

    at UC Davis UC Irvine

  • COM701 (an Inhibitor of PVRIG) in Subjects With Advanced Solid Tumors.

    open to eligible people ages 18 years and up

    This is a Phase 1 open label sequential dose escalation and cohort expansion study evaluating the safety, tolerability and preliminary clinical activity of COM701 as monotherapy and in combination with nivolumab.

    at UCLA

  • Experimental Cisplatin and Combination Chemotherapy in Children and Young Adults With Hepatoblastoma or Liver Cancer After Surgery

    open to eligible people ages up to 30 years

    This partially randomized phase II/III trial studies how well, in combination with surgery, cisplatin and combination chemotherapy works in treating children and young adults with hepatoblastoma or hepatocellular carcinoma. Drugs used in chemotherapy, such as cisplatin, doxorubicin, fluorouracil, vincristine sulfate, carboplatin, etoposide, irinotecan, sorafenib, gemcitabine and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving combination chemotherapy may kill more tumor cells than one type of chemotherapy alone.

    at UC Davis UCLA UCSF

  • Experimental Radiotracer Imaging Study for Cancer Patients

    open to eligible people ages 18 years and up

    This clinical trial studies the side effects of 18F-alphavbeta6-binding-peptide and how well it works in imaging patients with primary or cancer that has spread to the breast, colorectal, lung, or pancreatic. Radiotracers, such as 18F-alphavbeta6-binding-peptide, may improve the ability to locate cancer in the body.

    at UC Davis

  • First in Human Study of KO-539 in Relapsed or Refractory Acute Myeloid Leukemia

    open to eligible people ages 18 years and up

    This first-in-human (FIH) dose-escalation and dose-validation/expansion study will assess ziftomenib (KO-539), a menin-MLL(KMT2A) inhibitor, in patients with relapsed or refractory acute myeloid leukemia (AML).

    at UCLA

  • Genetic Testing in Guiding Treatment for Patients With Brain Metastases

    open to eligible people ages 18 years and up

    This phase II trial studies how well genetic testing works in guiding treatment for patients with solid tumors that have spread to the brain. Several genes have been found to be altered or mutated in brain metastases such as NTRK, ROS1, CDK or PI3K. Medications that target these genes such as abemaciclib, paxalisib, and entrectinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Genetic testing may help doctors tailor treatment for each mutation.

    at UC Irvine UCSD

  • Genetically Engineered PBMC and PBSC Expressing NY-ESO-1 TCR After a Myeloablative Conditioning Regimen to Treat Patients With Advanced Cancer

    open to eligible people ages 16 years and up

    This phase I clinical trial evaluates the safety and feasibility of administering NY-ESO-1 TCR (T cell receptor)engineered peripheral blood mononuclear cells (PBMC) and peripheral blood stem cells (PBSC) after a myeloablative conditioning regimen to treat patients with cancer that has spread to other parts of the body. The conditioning chemotherapy makes room in the patient?s bone marrow for new blood cells (PBMC) and blood-forming cells (stem cells) to grow. Giving NY-ESO-1 TCR PBMC and stem cells after the conditioning chemotherapy is intended to replace the immune system with new immune cells that have been redirected to attack and kill the cancer cells and thereby improve immune system function against cancer.

    at UCLA

  • Nivolumab and Ipilimumab in Treating Patients With Rare Tumors

    open to eligible people ages 18 years and up

    This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)

    at UC Davis UC Irvine UCSD

  • Pembrolizumab After Chemotherapy in Treating Patients With Colorectal Cancer That Has Spread to the Liver and Who Are Undergoing Liver Surgery

    open to eligible people ages 18 years and up

    This phase II trials studies how well pembrolizumab and vactosertib work after standard of care chemotherapy in patients with colorectal cancer that has spread to the liver that can be removed by surgery (resectable hepatic metastases). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Vactosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab and vactosertib after standard of care chemotherapy, but before liver metastases surgery, may help shrink the cancer prior to surgery. This study also investigates pembrolizumab and vactosertib after liver metastases surgery, decrease the risk of the cancer recurring (coming back).

    at UCSF

  • Pembrolizumab With Liver-Directed or Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors and Liver Metastases

    open to eligible people ages 18 years and up

    This pilot phase II trial studies how effective pembrolizumab and liver-directed therapy or peptide receptor radionuclide therapy are at treating patients with well-differentiated neuroendocrine tumors and symptomatic and/or progressive tumors that have spread to the liver (liver metastases). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Liver-directed therapies such as radiofrequency ablation, transarterial embolization, yttrium-90 microsphere radioembolization, and cryoablation may help activate the immune system in order to shrink tumors that are not being directly targeted. Peptide receptor radionuclide therapy is a form of targeted treatment that is performed by the use of a small molecule, which carries a radioactive component attached to a peptide. Once injected into the body, this small molecule binds to some specific sites on tumor cells called receptors and emit medium energy radiation that can destroy cells. Because this radionuclide is attached to the peptide, which binds receptors on tumor lesions, the radiation can preferably be targeted to the tumor cells in order to destroy them. Giving pembrolizumab in combination with liver-directed therapy or peptide receptor radionuclide therapy may work better than pembrolizumab alone.

    at UCSF

  • Phase 2 Basket Trial of Nab-sirolimus in Patients With Malignant Solid Tumors With Pathogenic Alterations in TSC1 or TSC2 Genes (PRECISION 1)

    open to eligible people ages 12 years and up

    A Phase 2 multi-center open-label basket trial of nab-sirolimus for adult and adolescent patients with malignant solid tumors harboring pathogenic inactivating alterations in TSC1 or TSC2 genes

    at UCLA UCSF

  • Prospective Exploratory Study of FAPi PET/CT in Prostate Cancer With Histopathology Validation

    open to eligible males ages 18 years and up

    This exploratory study investigates how a new imaging technique called FAPI PET/CT can determine where and to which degree the FAPI tracer (68Ga-FAPi-46) accumulates in normal and cancer tissues in patients with prostate cancer. Because some cancers take up 68Ga-FAPi-46 it can be seen with PET. FAP stands for Fibroblast Activation Protein. FAP is produced by cells that surround tumors. The function of FAP is not well understood but imaging studies have shown that FAP can be detected with FAPI PET/CT. Imaging FAP with FAPI PET/CT may in the future provide additional information about various cancers including prostate cancer.

    at UCLA

  • Single Fraction Stereotactic Radiosurgery Compared With Fractionated Stereotactic Radiosurgery in Treating Patients With Resected Metastatic Brain Disease

    open to eligible people ages 18 years and up

    This phase III trial studies how well single fraction stereotactic radiosurgery works compared with fractionated stereotactic radiosurgery in treating patients with cancer that has spread to the brain from other parts of the body and has been removed by surgery. Single fraction stereotactic radiosurgery is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may cause less damage to normal tissue. Fractionated stereotactic radiosurgery delivers multiple, smaller doses of radiation therapy over time. This study may help doctors find out if fractionated stereotactic radiosurgery is better or worse than the usual approach with single fraction stereotactic radiosurgery.

    at UCSD

  • Testing Sacituzumab Govitecan Therapy in Patients With HER2-Negative Breast Cancer and Brain Metastases

    “Volunteer for research and contribute to discoveries that may improve health care for you, your family, and your community!”

    open to eligible people ages 18 years and up

    This phase II trial studies the effect of sacituzumab govitecan in treating patients with HER2-negative breast cancer that has spread to the brain (brain metastases). Sacituzumab govitecan is a monoclonal antibody, called sacituzumab, linked to a chemotherapy drug, called govitecan. Sacituzumab is a form of targeted therapy because it attaches to specific molecules on the surface of cancer cells, known as Trop-2 receptors, and delivers govitecan to kill them. Giving sacituzumab govitecan may shrink the cancer in the brain and/or extend the time until the cancer gets worse.

    at UC Irvine

  • Testing the Addition of an Experimental Medication MK-3475 (Pembrolizumab) to Usual Anti-Retroviral Medications in Patients With HIV and Cancer

    open to eligible people ages 18 years and up

    This phase I trial studies the side effects of pembrolizumab in treating patients with human immunodeficiency virus (HIV) and malignant neoplasms that have come back (relapsed), do not respond to treatment (refractory), or have distributed over a large area in the body (disseminated). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

    at UCSF

  • Thoracotomy Versus Thoracoscopic Management of Pulmonary Metastases in Patients With Osteosarcoma

    open to eligible people ages up to 50 years

    This phase III trial compares the effect of open thoracic surgery (thoracotomy) to thoracoscopic surgery (video-assisted thoracoscopic surgery or VATS) in treating patients with osteosarcoma that has spread to the lung (pulmonary metastases). Open thoracic surgery is a type of surgery done through a single larger incision (like a large cut) that goes between the ribs, opens up the chest, and removes the cancer. Thoracoscopy is a type of chest surgery where the doctor makes several small incisions and uses a small camera to help with removing the cancer. This trial is being done evaluate the two different surgery methods for patients with osteosarcoma that has spread to the lung to find out which is better.

    at UCSF

  • Two Studies for Patients With High Risk Prostate Cancer Testing Less Intense Treatment for Patients With a Low Gene Risk Score ...

    “Volunteer for research and contribute to discoveries that may improve health care for you, your family, and your community!”

    open to eligible males ages 18 years and up

    This phase III trial compares less intense hormone therapy and radiation therapy to usual hormone therapy and radiation therapy in treating patients with high risk prostate cancer and low gene risk score. This trial also compares more intense hormone therapy and radiation therapy to usual hormone therapy and radiation therapy in patients with high risk prostate cancer and high gene risk score. Apalutamide may help fight prostate cancer by blocking the use of androgen by the tumor cells. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Giving a shorter hormone therapy treatment may work the same at controlling prostate cancer compared to the usual 24 month hormone therapy treatment in patients with low gene risk score. Adding apalutamide to the usual treatment may increase the length of time without prostate cancer spreading as compared to the usual treatment in patients with high gene risk score.

    at UC Davis UC Irvine UCSF

  • A Study of miRNA 371 in Patients With Germ Cell Tumors

    open to eligible people ages 18 years and up

    This trial studies whether the blood marker micro ribonucleic acid (miRNA) 371 can predict the chance of cancer returning in patients with germ cell cancers. Studying samples of blood from patients with germ cell cancers in the laboratory may help doctors predict how likely the cancer will come back.

    at UC Irvine UCLA UCSD

  • Collecting and Storing Tissue From Young Patients With Cancer

    open to eligible people ages up to 21 years

    This laboratory study is collecting and storing tissue, blood, and bone marrow samples from young patients with cancer. Collecting and storing samples of tissue, blood, and bone marrow from patients with cancer to study in the laboratory may help doctors learn more about changes that may occur in DNA and identify biomarkers related to cancer.

    at UCSF

  • Genetic Analysis in Identifying Late-Occurring Complications in Childhood Cancer Survivors

    open to eligible people ages up to 99 years

    This clinical trial studies cancer survivors to identify those who are at increased risk of developing late-occurring complications after undergoing treatment for childhood cancer. A patient's genes may affect the risk of developing complications, such as congestive heart failure, avascular necrosis, stroke, and second cancer, years after undergoing cancer treatment. Genetic studies may help doctors identify survivors of childhood cancer who are more likely to develop late complications.

    at UCLA UCSF

  • Germ-Line Mutations in Blood and Saliva Samples From Patients With Cancer

    open to eligible people ages 18 years and up

    This research trial studies germ-line mutations in blood and saliva samples from patients with cancer. Studying samples of blood and saliva from patients with cancer in the laboratory may help doctors learn more about how inherited genetic mutations can affect cancer predisposition (an inherited increase in the risk of developing cancer), their impact on treatment response, and their role in cancer development.

    at UCLA

  • Hypoxia-Specific Imaging to Predict Outcomes of Chimeric Antigen Receptor T-cell Therapy

    open to eligible people ages 18 years and up

    This study evaluates whether tumors present in patients with cancer who are planned to get CAR T-cells have low amounts of oxygen (hypoxia). PET scans may be used to check the amounts of oxygen within areas of cancer with a special radioactive tracer called FAZA that specifically looks for areas of low oxygen. This study is being done to help researchers determine how the amount of oxygen within areas of cancer affect how well CAR T-cells kill cancer cells.

    at UCSF

  • Neuropsychological and Behavioral Testing in Younger Patients With Cancer

    open to eligible people ages 1 month and up

    This research trial studies neuropsychological (learning, remembering or thinking) and behavioral outcomes in children and adolescents with cancer by collecting information over time from a series of tests.

    at UCLA UCSF

  • Patient-Derived Xenografts to Reduce Cancer Health Disparities

    open to eligible people ages 21-100

    This trial establishes patient-derived cancer xenografts in addressing cancer health and treatment disparities that disproportionately affect racial/ethnic minorities. Understanding the genetic and response differences among racial/ethnic minorities may help researchers enhance the precision of therapeutic treatments.

    at UC Davis UC Irvine

Our lead scientists for Malignant Neoplasm research studies include .

Last updated: