Skip to main content

Malignant Solid Neoplasm clinical trials at UC Cancer
19 research studies open to eligible people

  • A Study of the Experimental Medicine Olaparib For Advanced Glioma, Cholangiocarcinoma, or Solid Tumors With IDH1 or IDH2 Mutations

    open to eligible people ages 18 years and up

    This phase II trial studies how well olaparib works in treating patients with glioma, cholangiocarcinoma, or solid tumors with IDH1 or IDH2 mutations that have spread to other places in the body (metastatic) and usually cannot be cured or controlled with treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UC Davis

  • ATR Kinase Inhibitor VX-970 and Irinotecan Hydrochloride combination for solid tumors that are metastatic or cannot be removed

    “Experimental targeted cancer therapy and chemotherapy combination for tumors that have returned, spread, or cannot be removed”

    open to eligible people ages 18 years and up

    This phase I trial studies the side effects and best dose of VX-970 and irinotecan hydrochloride in treating patients with solid tumors that have spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable). VX-970 and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UC Davis UCSF

  • Experimental Erdafitinib for Relapsed/Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorder

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment with FGFR mutations. Erdafitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Experimental medicine in Treating Patients With HIV-Associated Hodgkin Lymphoma

    open to eligible people ages 18 years and up

    This phase I trial studies the side effects and best dose of nivolumab when given with ipilimumab in treating patients with human immunodeficiency virus (HIV) associated classical Hodgkin lymphoma that has returned after a period of improvement or does not respond to treatment, or solid tumors that have spread to other places in the body or cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Ipilimumab is an antibody that acts against a molecule called cytotoxic T-lymphocyte antigen 4 (CTLA-4). CTLA-4 controls a part of your immune system by shutting it down. Nivolumab is a type of antibody that is specific for human programmed cell death 1 (PD-1), a protein that is responsible for destruction of immune cells. Giving ipilimumab with nivolumab may work better in treating patients with HIV associated classical Hodgkin lymphoma or solid tumors compared to ipilimumab with nivolumab alone.

    at UC Davis UCLA UCSD UCSF

  • Genetic Testing to Determine Therapy For Pediatric Relapsed or Refractory Advanced Solid Tumors

    open to eligible people ages 12 months to 21 years

    This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.

    at UC Davis UCLA UCSF

  • Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that have spread to other places in the body and have come back or do not respond to treatment. Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Nanoparticle Albumin-Bound Rapamycin, Temozolomide, and Irinotecan Hydrochloride in Treating Pediatric Patients With Recurrent or Refractory Solid Tumors

    open to eligible people ages 12 months to 21 years

    This phase I trial studies the side effects and best dose of nanoparticle albumin-bound rapamycin when given together with temozolomide and irinotecan hydrochloride in treating pediatric patients with solid tumors that have come back after a period of time during which the tumor could not be detected or has not responded to treatment. Nanoparticle albumin-bound rapamycin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nanoparticle albumin-bound rapamycin, temozolomide, and irinotecan hydrochloride may work better in treating pediatric patients with solid tumors.

    at UCSF

  • Olaparib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Defects in DNA Damage Repair Genes (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

  • Palbociclib in Treating Patients With Relapsed or Refractory Rb Positive Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating Alterations in Cell Cycle Genes (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    at UCLA UCSF

  • Pepinemab in Treating Younger Patients With Recurrent, Relapsed, or Refractory Solid Tumors

    open to eligible people ages 12 months to 30 years

    This phase I/II trial studies the side effects and best dose of pepinemab and to see how well it works in treating younger patients with solid tumors that have come back after treatment, or do not respond to treatment. Immunotherapy with monoclonal antibodies, such as pepinemab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

    at UCSF

  • Pevonedistat, Irinotecan Hydrochloride, and Temozolomide in Treating Patients With Recurrent or Refractory Solid Tumors or Lymphoma

    open to eligible people ages 6 months to 21 years

    This phase I trial studies the side effects and best dose of pevonedistat when given together with irinotecan hydrochloride and temozolomide in treating patients with solid tumors, central nervous system (CNS) tumors, or lymphoma that have come back after a period of improvement (recurrent) or that do not respond to treatment (refractory). Pevonedistat and irinotecan hydrochloride may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pevonedistat, irinotecan hydrochloride, and temozolomide may work better in treating patients with solid tumors, central nervous system (CNS) tumors, or lymphoma compared to irinotecan hydrochloride and temozolomide alone.

    at UCSF

  • PI3K/mTOR Inhibitor LY3023414 in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With TSC or PI3K/MTOR Mutations (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well PI3K/mTOR inhibitor LY3023414 works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). PI3K/mTOR inhibitor LY3023414 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    at UCLA UCSF

  • Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas

    open to eligible people ages 12 months to 21 years

    This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

    at UCSF

  • Targeted therapy directed by genetic testing in treating patients with advanced solid tumors, lymphomas, or multiple myeloma

    “Will identifying genetic abnormalities in tumor cells help doctors plan better, more personalized treatment for cancer patients?”

    open to eligible people ages 18 years and up

    This phase II MATCH trial studies how well treatment that is directed by genetic testing works in patients with solid tumors or lymphomas that have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.

    at UC Davis UC Irvine UCSD

  • Targeted therapy for sarcomas, Wilms tumor, rare tumors that have come back, did not respond to treatment, or are newly diagnosed

    “How well does targeted therapy, (cabozantinib-s-malate) work in treating younger patients with sarcomas and rare tumors?”

    open to eligible people ages 2-30

    This phase II trial studies how well cabozantinib-s-malate works in treating younger patients with sarcomas, Wilms tumor, or other rare tumors that have come back, do not respond to therapy, or are newly diagnosed. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth and tumor blood vessel growth.

    at UC Davis UCSF

  • Tazemetostat in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with solid tumors, non-hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCLA UCSF

  • Testing the Combination of New Anti-cancer Drug Nedisertib With Avelumab and Radiation Therapy for Advanced/Metastatic Solid Tumors and Hepatobiliary Malignancies

    open to eligible people ages 18 years and up

    This phase I/II trial studies the best dose and side effects of nedisertib and to see how well it works with avelumab and hypofractionated radiation therapy in treating patients with solid tumors and hepatobiliary malignancies that have spread to other places in the body (advanced/metastatic). Nedisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving nedisertib in combination with avelumab and hypofractionated radiation therapy may work better than other standard chemotherapy, hormonal, targeted, or immunotherapy medicines available in treating patients with solid tumors and hepatobiliary malignancies.

    at UC Davis

  • Ulixertinib in Treating Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.

    at UCSF

  • Vemurafenib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body and have come back or do not respond to treatment. Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    at UCSF

Last updated: